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Ten years ago, Hamkins, 2012 changed the landscape of the foundations of mathematics, by
introducing a novel, pluralist conception that tried to clarify some ambiguous notions in current
set theoretic practice. In particular, he provided a revolutionary interpretation for the practice
of forcing: a multiverse of different set theoretic universes. Such an idea immediately sparked
an intense debate in the philosophy of set theory and the foundations of mathematics. In the
following years, several crucial contributions were made.!

Indeed, while the general idea behind pluralism in the philosophy of mathematics is more or
less the same every time, the actual mathematical details can vary enormously from one charac-
terisation to the other. Even though all these different set theoretic multiverses share the same,
general, philosophical idea, they differ wildly from the mathematical perspective. There are some
proposal of assessing all these differences?, but this research field is still in its infancy.

One of the goals of this research is categorising all the different multiverses, trying to draw
distinctions between them and maybe defining some broad categories or types of multiverses. This
has been done in several, informal ways in the literature: for example, Antos, S. Friedman, et al.,
2015 distinguishes between realist and anti-realist multiverses, appealing to known definition in
the ontology of mathematics.

Another possible distinction can be drawn between multiverses in which the truth value of set
theoretic statements collapses to the truth value of that same statement in a particular universe
of the multiverse vs multiverse that don’t collapse in this way. Or between linear and branching
multiverses.> The linear multiverses expand by building on all the universes part of the multiverse,
while the branching ones admits “bifurcations”. According to this informal distinction, Steel’s set
generic multiverse is a linear multiverse, while Hamkins’ multiverse is a branching one.

The problem with most of the distinctions found in the literature and folklore on the multiverse
is that they are exclusively philosophically motivated. While they are very useful in investigating
matters in the foundations and philosophy of mathematics, we still lack a purely mathematical
characterisation of set theoretic multiverses as a whole.

In this paper, I plan to close this gap, and develop a mathematical method to investigate
the set-theoretic multiverses as a single, uniform structure. To do so, I introduce the Multiverse
Operator. With this operator, it’s possible to define the structure of all multiverses and then define
formal distinction between them. I contend that this changes the landscape of the research in the
set theoretic multiverse in an important way. While currently each multiverse is investigated
singularly, as an isolated entity, with my proposal it will become possible to approach the class of
all multiverses as a single, unified structure. As an analogy, each single multiverse can be thought

ISee for example Antos, Barton, and S. Friedman, 2021, Martin, 2001, Maddy, 2017, Gitman and Hamkins, 2011,
Steel, 2014, and Ternullo and S.-D. Friedman, 2016.

2See for example Meadows, 2022.

3 A recent paper that brings up this distinction, in the context of potentialist systems, is Hamkins and Linnebo, 2022.



of as an algebra, or a logic, while my approach is similar to Universal Algebra, or Universal
Logic.*

The first step to carry out this program is to characterise the multiverse as single structure.
Very briefly, we can characterise each multiverse as a set of models of set theory, in this context
called universes. For example, Steel’s set generic multiverse is the set of all set-generic extensions
of a core universe, Friedman’s Hyperuniverse is the set of all countable transitive models of ZFC,
etc.. The Multiverse Operator, Mlt;, is a function defined on a stage Vi of a set theoretic universe.’
A multiverse operator maps each stage Vi with the set of all universes, M, that are part of the
multiverse generated using Vi as the ground universe:

Milt; Ve — M.

For example, the operator Mltee,eric applied to any Vi, written Mltgeneric(Vic), will map to Steel’s
set generic multiverse. In this way we can define in very general terms what a set theoretic
multiverse is: it is an ordered couple (Vi, Mlt;), where Vi is a stage of V and Mz, is a multiverse
operator.

The multiverse operator can then be used to define the structure of all set theoretic multiverses.
To do so, consider the multiverse operator in general, without specifying the generating method
of each set theoretic multiverse (e.g. the difference between Mltgeperic and Mlty,q;c). We can
then define the general structure (Vi, MIt), that encompasses all the possible multiverses. This
structure forms a Tarski structure, that is, it obeys the following axioms:

1. Vi CMIt(Vy);
3. Mit(Mlt(Vi)) C Mt (Vi).

Having defined the structure (Vi,Mlt) of set theoretic multiverse, we can start defining the
different types of set theoretic multiverses using the multiverse operator.

The first case is the most basic one, i.e. the Single Universe. According the universism, the
Single Universe is simply V, the cumulative hierarchy. According to actualism, it’s not possible
to extend V in any way: in particular, when we are using set-generic forcing we are not applying
it to the whole V, but to a countable transitive model in V. The extension produced by forcing
will still be just a countable transitive model inside V. With the multiverse operator, we can
say that define the actualist Single Universe as Mit;(Vi) = M[G], such that M[G] € Vi (i.e., no
matter the generating method used, we still end up in V). In the same fashion, we can define a
height-potentialist (that admits the expansion in height of V) Single Universe (M1t;(V) = Vic11),
a width potentialist (that admits the expansion in width of V) Single Universe (M1t;(Vi) = Vi[G]),
and finally a radical potentialist (that admits the expansion of V both in height and width) Single
Universe (M1t;(Vi) = Vi11[G]). However, this cases aren’t actually multiverses cases, so they are
not part of the structure (Vi., Mlt). This is because they don’t satisfy the axiom (3) above.

Back to the case of the proper multiverse, an interesting distinction that we can define is
the one between closed and open multiverses. The closed multiverses are the multiverses that
collapse in their ground universe. That is, MIt;(Vi) = V.. Multiverses in which the truth value of
a statement ¢ in any universe collapses in its truth value in the ground universe are part of this
class of multiverses (e.g. Woodin’s set generic multiverse is such a multiverse). On the other hand,
the open multiverses are the ones that don’t collapse in their ground universe, i.e. MIt;(Vy) # V.

4See for example Beziau, 2007.
SHere I am referring to only a stage of the cumulative hierarchy, since we cannot refer to the whole V' as an actual
mathematical object.



Now consider any universe Vi such that Mlr;(V) = V.. We can now define the following
principle:

Vi = @ <= for any closed multiverse U8 such that Vi C Uy, Uy = o. (A)

This principle says that a universe Vj, that forms a closed multiverse, witnesses a certain statement
¢ iff that statement @ is also witnessed by all the other universes that form a closed multiverse and
that encompass V. For example, consider Steel’s set-generic multiverse. If V = Ultimate — L is
true, then the multiverse has a core, and everything that is true in the core is also true in the whole
multiverse. Such a multiverse satisfies principle (A): if ¢ is true in the core of the multiverse, then
every extension Uy of the core also satisfies .

Using principle (A), we can then define the linear and branching distinction in the following
terms: a multiverse is linear if and only if it principle (A) holds for it, otherwise it’s branching.
According to this definition, Steel’s set generic multiverse is then a linear multiverse.

This is only a first step in a novel research field. It’s possible to use the multiverse operator
to define all types of distinctions between multiverses. This opens up the possibility to study
the set-theoretic multiverse in a more uniform and unified way, instead that trying to assess each
single multiverse by itself.
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